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Asymptotic distributions of the Montroll-Weiss equation for the con- 
tinuous-time random walk are investigated for long times. It is shown that, 
for a certain subclass of the hopping waiting time distributions belonging to 
the domain of attraction of stable distributions, these asymptotic distribu- 
tions are of stable form. This indicates that the realm of applicability of the 
diffusion equation is limited. The Montroll-Weiss equation is rederived to 
include the influence of the initial waiting interval and the role of the stable 
distributions in physical problems is briefly discussed. 
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1. I N T R O D U C T I O N  

The Montrol l -Weiss~l~ equa t ion  ( M W  equat ion)  is app rop r i a t e  to a type o f  
general ized diffusion which is direct ly  appl icable  to a large class o f  diffusion 
prob lems .  (2~ F o r  many  p rob lems  it is equivalent  to a mas ter  equa t ion  a p p r o a c h  
and  for  h ighly  n o n - M a r k o v i a n  processes supersedes it. (3's~ It  can be der ived 
as follows.  

Suppose  a par t ic le  per forms  j u m p s  such tha t  the individual  j u m p  vector  
in space has a p robab i l i t y  densi ty  p(r)  and  tha t  all j u m p  vectors are stat ist i-  
cal ly independen t  with ident ical  d is t r ibut ions .  The pos i t ion  relative to the 
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origin of the process after exactly n jumps is deduced by noting that the 
characteristic function of the final distribution is equal to h~(k), where 

h(k) = f p(r) exp(ik.r) dr (1) 

and the integration is performed over all space. In general the time intervals 
between jumps will not be constant but will also be governed by a probability 
distribution F(t ) .  If all the intervals are independent and have identical 
distributions, it can be shown (6) that the probability of having N jumps in 
time t is given by 

P { N  = n} = Fn*( t )  - F(n+l)*(t) (2) 

where the symbol * indicates a convolution in the sense of Feller. (7) In Eq. (2) 
it is assumed that a jump has just taken place at t = 0; this is the situation 
relevant to a Green's function interpretation of the MW formula. On the 
other hand, for the situation where it is not known that a jump has taken 
place at t = 0, we must introduce the distribution of the first waiting interval, 
which will not usually be the same as F( t ) .  Denoting this by H ( t ) ,  we have 

P { N  = n} = H ( t )  * F ("- 1)*(t) - H ( t )  * F~*(t)  (3) 

If the particular time intervals are independent of their jump vectors, a 
simple randomization suffices to give the density of  the final position at 
time t, given that at t = 0 the particle was located at r = O, i.e., 

p(k, t) = ~ h~(k) [H*F (~-1)* - H * F  ~*] 
n = O  

On taking the Laplace transform with respect to time and performing a 
geometric sum, we obtain a generalized MW formula: 

h(s)[1 - ~b(s)] (4) 
p(k, s) = s~b(s)[1 - A(k)~b(s) 

where 

fo ~ 
~b(s) = e -S tF(d t )  and h(s) = e -S tH(dt )  

Clearly ifp(k, s) is to represent a Green's function, then ~b(s) = h(s) and some 
simplification results (we obtain the standard form). 

It is important to note that in Eq. (4) position and time are not on the 
same footing: The double inversion will give the probability p(r, t) dr of 
observing the particle at position r in volume dr at time t. 

Solutions of the MW equation have been calculated numerically by 
Montroll and Sher, (8) while Shlesinger (~) has examined some asymptotic 
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properties such as the mean position of the particle and the dispersion. The 
treatment relies on the use of  Tauberian theorems which means that the 
distributions, particularly of F(t), are regularly varying in the tail. F(t) 's  
belonging to the domain of attraction of a stable distribution with exponent 
v are treated (the results presented here are entirely consistent with those of 
Shlesinger). For  0 < v < 1 some success is gained in the explanation of  
observed mobilities in some amorphous materials. An example of the 
natural occurrence of distributions F(t) of this type has been given by 
Tunaley.(10~ 

In the present study we examine the shape of  the asymptotic distribu- 
tions (or their tails) and show that these will be of  stable form under suitable 
conditions of regular variation in the distributions P(r), F(t). The very im- 
portant cases where 1 < v < 2 are included. Although the stable densities 
cannot usually be expressed in closed form, they can be obtained numerically 
using the series expansion given by Feller, (v~ for example. 

2. S C A L I N G  

We must examine the shape of the distribution of the final position after 
long times such that a further increase in time produces a change in shape of  
such a type that the original shape can be recovered by a simple scale trans- 
formation, i f  the solution of the MW equation in one dimension is 

P { X  <_ x; t} = a(x ,  t) (5) 
we suppose that scale factors a and b exist so that the asymptotic solution 
G'(x, t) is given by 

lira P{X/a <_ x; bt} = G'(x,t)  (6) 

Evidently from Eq. (5) we have 

P{X/a <_ x; bt} = G(ax, bt) 

and after differentiation the density of X/a becomes 

px/~,bt(x, t) = apx,t(ax, bt) 

The Fourier-Laplace transform of  the new density is given by 

s) = _( ap~,L(ax, bt)e *k~-~* dx dt P~/~,bt(k, 

= (1/b)p~.,(k/a, s/b) (7) 

Because of the uniqueness properties of the Fourier-Laplace transform, 
Eqs. (6) and (7) imply that the transform of the asymptotic density p'(k, s) 
is obtained from 

p'(k, s) -- lira (1/b)p(k/a, s/b) 
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The relat ionship between a and b has a definite form. Suppose a = f ( b )  

and consider two consecutive scalings. Clearly 

aza2 = f ( b l b 2 )  = f ( b l ) f ( b 2 )  

The solution to this is 

f ( b )  = b p, - o e  < t) < oo (8) 

The exponent  p is chosen according to the par t icular  distr ibutions involved. 
I t  is easily verified that  the conclusions are similar in three-dimensional  

space and returning to the M W  equation,  it is seen that  

p ' (k ,  s) = lira h(s/b)[1 - ~b(s/b)] 
~ . b - ~  s4~(s/b)[1 - ;~(k/a)~(s/b)] (9) 

As an example,  we can t reat  the case of  ordinary  diffusion where the 
mean j u m p  vector  is zero. We will also assume that  h(k) can be expanded in 
a series up to and including the second moment .  For  simplicity we also assume 
that  the direction of  the j u m p  is uni formly distr ibuted on a sphere so that  it is 
symmetr ic  and A(k) is only a funct ion of  k. Hence  

A(k) = 1 - kUao2/2 + ... (10) 

where %2 is the variance of  the x componen t  (say) of  a single j u m p  distance. 
Similarly ~b(s) can be expanded 

~b(s) = 1 - as  + fisZ/2 . . . .  (11) 

while, for  the moment ,  we put  h(s)  = ~b(s). In the limit a, b - +  oe only the 
the first two terms are impor tan t  and Eq. (9) yields 

p ' (k ,  s) = lim (12) 
~,b~oo e~s + (k2(roSb/2a 2) 

By choosing the norming  constant  b equal to a 2 according to Eq. (8), we have 

p ' (k ,  s) = (s + k2a20/2a)-I  (13) 

Invert ing this with respect to s and k shows tha t  

p(r, t) = (47rDt) -a/2 e x p ( - r 2 / 4 D t )  (14) 

where the coefficient D = cr02/2c~. This result is consistent with the solution 
of  the diffusion equat ion 

OnlOt = D V2n (15) 

for  a 3-function at the origin at t ime t = 0 [this is mos t  easily seen by taking 
the t r ans fo rm of  Eq. (15)]. 
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It is worthwhile noting that p(r, t) of  Eq. (14) represents a normal 
density (stable with u = 2) in the position r, and interestingly also takes the 
form of a stable density with v = �89 in t. We shall be more interested, however, 
in the marginal density representing diffusion along the x axis (say) when 
drifts, such as occur when a field is applied, are considered. The marginal 
density can be obtained from Eq. (13), for example, by simply putting 
k~ = kz = 0, so that 

p ' (kx,  s) = (s + kx~o~/2~) -1 

The inversion first with respect to k~ and then s gives 

1 .( ~ exp[-(2c~s)lf21x]/~o] exp st ds 
p'(x, t) = 2~ i_  ~0(2c~s) 1/2 

Consider now P { X  > x, t}. Evidently for x _> 0 

l ffx=~exp[-(2~s)lJ~X/=o]expstdsdx 
P{I"  > x, t} = ~ .  ~0(2~s)1~2 

_ 1 ( exp[-(2,s)~12X/eo] exp st ds 
~ i  J s 

The exponential factor in the integrand is the Laplace transform of a stable 
density with exponent v = �89 To remove the scale factor (2c~x~/a02) ~/2, trans- 
formations can be performed X - +  X/~o, t -+ t/2c~x 2 in order to express the 
result in terms of a stable distribution (the s -  1 term converts the density into 
a distribution) with unit scale factor S~. Thus for x > 0 

P{X/eo > x, t} = �89 2) (16) 

A similar development for x < 0 shows that 

P { X / %  < x, t} = �89 2) (17) 

which/Lndicates the required symmetry. It will be shown that the expression 
obtained above, though more cumbersome than the normal density, appears 
more fundamental in generalized diffusion. 

3. A G E N E R A L I Z E D  S Y M M E T R I C  D I F F U S I O N  

In this section we assume that the jump vectors belong to the domain of 
attraction of the normal distribution but that the time intervals belong to the 
domain of attraction of stable distributions. First we take 0 < v < 1 and 
limit F(t )  to be of  the asymptotic form 

1 - F ( t )  ,,~ c ~ / t ~ r ( 1  - v) ,  t - +  oo ( 1 8 )  
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where c~ is a constant. This class of F(t) is not as general as that treated by 
Feller in that ~ is not a slowly varying function of t (e.g., c~ = in t). The choice 
0 < v < i means that the jumping time intervals have infinite mean and 
variance. It can be shown (7~ that Eq. (18) implies 

1 - r  ~ ~ s  v, s ~ 0 ( 1 9 )  

and this can be employed to give the expansion of 4~(s) required for deriving 
the asymptotic form o f P { X  > x, t}, etc. 

Inserting the expansions into Eq. (9) yields for the Green's function 

0~Sv - 1 

p'(k, s) = lim (20) 
a,b-.| bV[(~s~/b ~) + (k%o2/2a2)l 

Choosing a 2 = b v, we obtain 

p'(k, s) = s~-I/(s ~ + k%02/2~) (21) 

The marginal density p'(x, t) can be derived by inversion and proceeding as 
above for x > 0: 

1 f exp{[-(2c~s~)~12/%]x} exp st ds (22) P { X  > x, t} = 4--~ni s 

Thus f o r x >  0 

1 t p X t } = ~  

while for x < 0 

The presence of the longer tail in the case of S~/2 as opposed to $1r indicates 
that the particle is more likely to be found near the origin. Comparing the 
transform in Eq. (21) with that of Eq. (15), it is clear that the diffusion 
equation is inapplicable to the present situation. 

The next case of interest concerns distributions F(t)  which yield a finite 
mean but infinite variance in the jumping time interval. This is concentrated 
on  the positive half axis (negative times are not allowed) and an infinite 
variance implies a long tail for large times. The density must be asymmetric 
and be rapidly decreasing toward the origin. Although this type of distribu- 
tion is one-sided, it will be convenient to transform out the centering and deal 
with a two-sided density. Thus a Fourier rather than Laplace transform is 
required in time and defining 

= ( e ~ t r ( d t )  (25) 
J 
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yields a M W  equat ion:  

h(o~)[1 - 4,(,0)] 
p(k,  co) = _ ioJ~b(co)[1 - ~(k)~b(co)] (26) 

The scaling theory and the derivation of  the asymptot ic  forms remain 
similar. 

For  the type of  distribution under  consideration,  the characteristic 
funct ion expansion is chosen to be of  the fo rm C7~ (co ~ 0) 

~b(o)) ~ 1 + icoc~ +/3[co[~e • + ..., 1 < v < 2 (27) 

where the positive sign applies when co < 0 and the negative sign when 
co > 0. The constant  ~ represents the mean  t ime between jumps  and/3  is a 
scale parameter .  Clearly F ( t )  belongs to the domain  of  at t ract ion of  a stable 
distribution with exponent  v, though due to the centering te rm icoc~ it is not  
strictly stable. Using the expansion of  A(k) for  one-dimensional  diffusion in 
Eq. (I0), the t rans form of  the asymptot ic  fo rm of  the Green ' s  funct ion is 
given by 

p ' (k ,  co) = lira c~ 
a,b--,~ b[( - ico~/b)  + (k2%2/Za2)] (28) 

The te rm in [co[~/b ~ becomes negligible compared  with that  in co/b since 
v > 1. Choosing a = b 112, we have 

p ' (k ,  co) = [(k%02/2~) - ico] -1 (29) 

which on per forming  the double inversion gives a normal  density in x or  the 
same result as Eq. (16) and (17) for  ordinary diffusion. 

4. A S Y M M E T R I C  D I F F U S I O N  

This applies typically to a si tuation when the diffusing particles are sub- 
jected to a constant  field so that  the r a n d o m  walk is biased in a direction of  
increasing x (say). Thus  the probabi l i ty  of  j umping  forward  is greater  than 
that  o f  jumping  backward  and this means tha t  A(k) must  include a term 
representing a finite mean  dis tance/z  traveled at each jump.  The expansion 
of  )t(k) is now 

;~(k) ,,, 1 + ikl x - k%2/2  (30) 

Using the expansion for  ~b(s) given by Eq. (11), which is appropr ia te  to ordi- 
nary diffusion, and inserting these into Eq. (9) gives the trivial result 

p ' (k ,  s) = lira c~ 
~,b~oo b[(e~s/b) + (iklx/a)] (31) 

= ( s  + i k t , /~ )  -1  (32) 
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where we have chosen a = b. The double inversion yields 

p ' ( x ,  t)  = a(x - ~t /~) (33) 

which is an improper  probabi l i ty  density which simply represents the drift 
par t  o f  the behavior :  The drift  velocity is /x/c~. To  obtain  a meaningful  
density, we can t rans form away the drift mot ion  and introduce a drifting 
coordinate  system so that  the density is always centered at the origin. Thus 
we examine P{ Y > x, t} = P { X  - txt/c~ > x ,  t} and proceed to determine 
the effect o f  this t r ans format ion  on the M W  equation.  Evidently 

P{  r > x ,  t} = a ( x  + t~t/~, t)  

with density 

p~(x,  t)  = p x ( x  + tzt/a, t)  (34) 

The Four ie r -Lap lace  t rans form ofp~(x,  t) is 

s) = f px(X + Ixt/% t)e ~kx-st d x  dt p~(k,  

= px(k ,  s + ikt*/~) (35) 

In  the asymptot ic  fo rm of  py(k ,  s) an examinat ion of  the behavior  of  the 
denomina to r  of  Eq. (9) shows that  we must  include the first three terms of  
the expansions of  r and h(k) [Eqs. (11) and (30)]. The denominator ,  1 - 
h(k/a)r  becomes 

iklz + k2cr ~ + as + iktzas__ c~sk% 2 [3s 2 ikl~[3s 2 ~s2k% 2 
---a-- ~ -b ab 2a2b 2b 2 2ab 2 + 4a2b 2 

Lett ing s--> s + iklx/a and keeping only those terms with the lowest expo- 
nents o f  a and b yields 

~ k~ ( ~____~ 
--5 + 2a---- ~ .a2 _ 2/, 2 + a2 ] (36) 

Thus 

py ' (k ,  s) = lim ,z/b + cr 2 - (37) 
~ , ~  ~ 2~ .2 + ~ / J J  

Letting a = b 1/2 yields 

p j ( k , s )  = s + ~  ~ 2 _  2/,2 + (38) 

Again this represents a normal  distribution in x but  the effective diffusion 
coefficient is now 

D = (1/2a)0r 2 - 2/~ 2 + tz2fi/a 2) (39) 
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To compare this with symmetric diffusion we can note that when 
= 0 the ordinary diffusion coefficient is obtained. The constant/3 is the 

mean square jump interval and/3 > ~2; with no dispersion in the jumping 
interval p = c~ 2 and 

D = (1/2a)(a 2 - t~ 2) (40) 

Since a 2 - t~ 2 is the variance in the jump position vector, in effect the simple 
diffusion coefficient is obtained. Clearly an uncertainty in the jumping interval 
increases the variance of the drifting walk. 

The treatment can be extended to the more general cases and for 
0 < v < 1 the expansion in Eq. (19) cart be employed 

[ k2a2 l 
Px'(k, s) = a,~-~ ~lim c~s ~-l /b~{ e~s~-~ iktZa + -2-~-a2 ]]  (41) 

To obtain the asymptotic form, we must let a = b ~ and the term k%2/2a 2 
becomes negligible. Hence 

s v  - 1 

px'(k ,  s) - s~ _ iktz/a (42) 

The inversion with respect to k can be performed by noting that with s on the 
imaginary axis the pole lies in the lower half of the complex plane: 

px(x ,  s) = (as ~ - l/Ix) e x p ( -  axsV/i z) 
This results in 

P > x , t  = Sv , x > 0 (43) 

while for x < 0 there is no contribution. 
It  is interesting to note that no change of axes is required and that the 

asymptotic behavior depends critically on whether or not a drift is present 
[compare Eqs. (23) and (24)]. 

For 1 < v < 2 the Fourier approach is required using the expansion in 
Eq. (27). A brief examination will show that, in the first approximation, 

px'(x,  t) = 3(x - ~t/~) (44) 

so that the Fourier analog of Eq. (35) must be employed, i.e., 

p~(k, co) = px(k ,  oJ - klz/a) 

On performing the above transformation and dropping high-order terms, the 
term in the denominator of the asymptotic expansion becomes 

b 1-~-~  
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Thus 

/ Pv (k, ~o) = lim a/b - i a  oJ a, ktz (45) 
a . ~ - ~  g - b -  - a ~  

We choose a = b 1/~ and recall v > l ;  as a ,b - ->oo  the term klz/aa will 
eventually dominate the oJ/b term in the modular brackets. Therefore 

p j ( k ,  o~) = i oJ - i e ~ 2  (46) 

where the positive sign is taken when k > 0 and the negative sign when 
k < O. Whether k is positive or negative, the pole in co lies in the lower half 
of  the complex plane, so that the inversion with respect to co can be performed 
easily: 

P Y ( k ' t ) = e x p I ~ e •  3 (47) 

It  can be shown (7) that this is the characteristic function of an asymmetric 
stable distribution with exponent v with a long tail on the negative half-axis 
and short tail on the positive half-axis. However, it is worth pointing out that 
while the mean position varies linearly with time, the dispersion only in- 
creases at a rate proportional to t 1~ by virtue of  the properties of  stable 
densities. 

The result can be expressed in terms of the stable distribution to which 
domain the distribution F( t )  belongs: Let this be S~(t; ~, fi), where ~ and/3 
are the same constants appearing in Eq. (27). The mean value, corresponding 
to ~, is found from Eq. (44), namely tzt/~. The second constant which may be 
determined by expanding the rhs of  Eq. (47) is equal to fltt~/~ ~+~. However, 
we must take into account that the long tail in the distribution of Y is in the 
opposite direction to that in t, so that 

P { Y  > - x }  = &(x ;  o, ~t~/~, ~+~) 

In terms of the stable distribution with unit scale parameter and zero 
centering we have 

e; 

p x > . . . .  & ( x )  
(Z (Z 

This result is entirely equivalent to that derived by Feller (7) for a simple 
situation. Once again the asymptotic distributions take on entirely different 
forms depending on whether there is a drift: Without drift the distribution is 
normal in x even when 1 < v < 2. 
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5. D I S C U S S I O N  

So far the possible influence o f  the initial waiting time distribution has 
not  been taken into account.  A situation where this should be considered is 
where particles are dumped  into a material at time ~- = 0 and are allowed to 
diffuse. Measurements  are started at some time ~- (where t = 0) so that  it 
would not  be certain that  a particle had just  jumped  into its observed loca- 
tion. We have seen that  this introduces a factor  h(s)/~b(s) into the M W  equa- 
t ion and in the limit b ~ ~ this reduces to h(0). I f  H(t )  is not  defective, 
h(0) = 1 and the results obtained above are equally applicable to the general- 
ized case. When  the mean time between jumps  is finite Feller (7~ shows that 
H(t)  is a proper  distribution, so that h(0) = 1 : thus when 1 < v < 2 there is 
no effect. When 0 < v < 1, Feller shows that  a generalized arc sine distri- 
but ion is appropriate.  This has a very long tail but  it can readily be verified 
that  it is nevertheless a proper  distribution and again h(0) = 1. On the other 
hand, we may have to wait a time t >> T before the asymptot ic  distributions 
derived above are a reasonable approximat ion;  o f  course this is t an tamount  
to ignoring the initial waiting time distr ibution; but to achieve a better 
result, the Laplace t ransform h(s) is required and it appears that  it may be 
difficult to express this in closed form. 

We have derived the asymptot ic  forms appropriate  to a wide range o f  
distributions for  the waiting interval with and without  drift. The jump vector 
is supposed to have a finite variance and applications where this latter condi- 
t ion must  be relaxed are probably  few. Al though the most  interesting case is 
when 0 < v < 1, the area o f  greatest application (for example, in diffusion 
and mobili ty considerations concerning amorphous  materials) is probably  
1 < v < 2. This is because the mean time between jumps  is finite so that 
macroscopic  quantities such as mobility and electrical resistance are also 
finite and their mean values will not  be a funct ion o f  time, a l though wild 
variations are possible. 

Finally we note that  the diffusion equation has been remarkably success- 
ful in the interpretation o f  certain physical phenomena  but its solution is 
really an asymptot ic  form of  the M W  equation. This is because many jumps 
occur on practical time scales. Similarly one might  expect the generalized 
versions to be equally significant but it is unlikely that  convergence to the 
derived distributions will occur at the same rate as for  ordinary diffusion, so 
that  some care must  be exercised. 
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